The covariation for Banach space valued processes and applications
نویسندگان
چکیده
This article focuses on a recent concept of covariation for processes taking values in a separable Banach space B and a corresponding quadratic variation. The latter is more general than the classical one of Métivier and Pellaumail. Those notions are associated with some subspace χ of the dual of the projective tensor product of B with itself. We also introduce the notion of a convolution type process, which is a natural generalization of the Itô process and the concept of ν̄0-semimartingale, which is a natural extension of the classical notion of semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes; the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of Kolmogorov type. [2010 Math Subject Classification: ] 60G22, 60H05, 60H07, 60H15, 60H30, 26E20, 35K90 46G05
منابع مشابه
Generalized covariation for Banach space valued processes, Itô formula and applications
This paper discusses a new notion of quadratic variation and covariation for Banach space valued processes (not necessarily semimartingales) and related Itô formula. If X and Y take respectively values in Banach spaces B1 and B2 and χ is a suitable subspace of the dual of the projective tensor product of B1 and B2 (denoted by (B1⊗̂πB2) ), we define the so-called χ-covariation of X and Y. If X = ...
متن کاملOn the character space of Banach vector-valued function algebras
Given a compact space $X$ and a commutative Banach algebra $A$, the character spaces of $A$-valued function algebras on $X$ are investigated. The class of natural $A$-valued function algebras, those whose characters can be described by means of characters of $A$ and point evaluation homomorphisms, is introduced and studied. For an admissible Banach $A$-valued function algebra...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملGeneralized covariation and extended Fukushima decompositions
This paper concerns a class of Banach valued processes which have finite quadratic variation. The notion introduced here generalizes the classical one, of Métivier and Pellaumail which is quite restrictive. We make use of the notion of χ-covariation which is a generalized notion of covariation for processes with values in two Banach spaces B1 and B2. χ refers to a suitable subspace of the dual ...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کامل